Lecture 8: Interest Point Detection

Saad J Bedros
sbedros@umn.edu
Review of Edge Detectors

- 3 × 3 gradient operators (Prewitt, Sobel) are simple and fast. Used when
 - fine edges are only needed
 - noise level is low
- By varying σ parameter, **Canny operator** can be used
 - to detect fine as well as rough edges
 - at different noise levels
- All **gradient operators**
 - provide edge orientation
 - need localisation: non-maxima suppression, hysteresis thresholding
- **Zero-crossing** edge detector
 - is supported by neurophysiological experiments
 - was popular in the 1980’s
 - today, less frequently used in practice
Today’s Lecture

• Interest Points Detection

• What do we mean with Interest Point Detection in an Image

• Goal: Find Same features between multiple images taken from different position or time
Applications

- Image alignment
- Image Stitching
- 3D reconstruction
- Object recognition
- Indexing and database retrieval
- Object tracking
- Robot navigation
Image Alignment

- Homography
- Ransac
Motivation: Patch Matching

Elements to be matched are image patches of fixed size.

Task: find the best (most similar) patch in a second image.

Known as: Template Matching Method, with option to use correlation as a metric.
Correlation

\[f \otimes h = \sum_{k} \sum_{l} f(k, l) h(i + k, j + l) \]

\[f = \text{Image} \]

\[h = \text{Kernel} \]
Use Cross Correlation to find the template in an image,
• Maximum indicate high similarity
Not all Patches are Created Equal!

Intuition: this would be a good patch for matching, since it is very distinctive (there is only one patch in the second frame that looks similar).
Not all Patches are Created Equal!

Intuition: this would be a BAD patch for matching, since it is not very distinctive (there are many similar patches in the second frame)

We need more robust feature descriptors for matching !!!!!
Interest Points

- Local features associated with a significant change of an image property of several properties simultaneously (e.g., intensity, color, texture).
Why Extract Interest Points?

- Corresponding points (or features) between images enable the estimation of parameters describing geometric transforms between the images.
What if we don’t know the correspondences?

- Need to compare *feature descriptors* of local patches surrounding interest points
Properties of good features

- **Local:** features are local, robust to occlusion and clutter (no prior segmentation!).
- **Accurate:** precise localization.

- **Invariant** (or **covariant**)
- **Robust:** noise, blur, compression, etc. do not have a big impact on the feature.

- **Distinctive:** individual features can be matched to a large database of objects.
- **Efficient:** close to real-time performance.
• A function \(f() \) is **invariant** under some transformation \(T() \) if its value does change when the transformation is applied to its argument:

\[
\text{if } f(x) = y \text{ then } f(T(x)) = y
\]

• A function \(f() \) is **covariant** when it commutes with the transformation \(T() \):

\[
\text{if } f(x) = y \text{ then } f(T(x)) = T(f(x)) = T(y)
\]
Invariance

• Features should be detected despite geometric or photometric changes in the image.
• Given two transformed versions of the same image, features should be detected in corresponding locations.
Example: Panorama Stitching

• How do we combine these two images?
Panorama stitching (cont’d)

Step 1: extract features
Step 2: match features
Panorama stitching (cont’d)

Step 1: extract features
Step 2: match features
Step 3: align images
What features should we use?

Use features with gradients in at least two (significantly) different orientations \rightarrow patches? Corners?
What features should we use? (cont’d)
The Aperture Problem

- Motion vectors are **ambiguous** at edge
 - locally, normal component can only be determined
 - tangential component cannot be determined
- Motion vectors are **unambiguous** at corner
Corners vs Edges

- **Corners** are locations where variations of intensity function $f(x, y)$ in both X and Y are high
 - \Rightarrow both partial derivatives f_x and f_y are large
- **Edges** are locations where variation of $f(x, y)$ in certain direction is high, while variation in the orthogonal direction is low
 - \Rightarrow when edge is oriented along Y, f_x is large, f_y small
Corner Detection
Corner Detection-Basic Idea

1. We should easily recognize the point by looking through a small window.
2. Shifting a window in *any direction* should give a large change in response.
Corner Detector: Basic Idea

“flat” region: no change in all directions

“edge”: no change along the edge direction

“corner”: significant change in all directions
Mains Steps in Corner Detection

1. For each pixel in the input image, the corner operator is applied to obtain a *cornerness* measure for this pixel.
2. Threshold cornerness map to eliminate weak corners.
3. Apply non-maximal suppression to eliminate points whose cornerness measure is not larger than the cornerness values of all points within a certain distance.
Main Steps in Corner Detection (cont’d)

- Apply Corner Operator
- Threshold Cornerness Map
- Non-maximal Suppression

Corners superimposed on Input Image
Corner Types

Example of L-junction, Y-junction, T-junction, Arrow-junction, and X-junction corner types
Corner Detection Using Edge Detection?

- Edge detectors are not stable at corners.
- Gradient is ambiguous at corner tip.
- Discontinuity of gradient direction near corner.
Corner Detection Using Intensity: Basic Idea

- Image gradient has two or more dominant directions near a corner.
- Shifting a window in *any direction* should give a *large change* in intensity.

“flat” region: no change in all directions

“edge”: no change along the edge direction

“corner”: significant change in all directions
• Measure intensity variation at (x,y) by shifting a small window (3x3 or 5x5) by one pixel in each of the eight principle directions (horizontally, vertically, and four diagonals).
Moravec Detector (1977)

- Calculate intensity variation by taking the sum of squares of intensity differences of corresponding pixels in these two windows.

\[S_W(\Delta x, \Delta y) = \sum_{x_i \in W} \sum_{y_i \in W} (f(x_i, y_i) - f(x_i - \Delta x, y_i - \Delta y))^2. \]

8 directions
\[\Delta x, \Delta y \text{ in } \{-1,0,1\} \]

\[S_W(-1,-1), S_W(-1,0), \ldots, S_W(1,1) \]
The “cornerness” of a pixel is the minimum intensity variation found over the eight shift directions:

\[\text{Cornerness}(x,y) = \min \{ S_W(-1,-1), S_W(-1,0), \ldots S_W(1,1) \} \]

Note response to isolated points!
• Non-maximal suppression will yield the final corners.
Moravec Detector (cont’d)

- Does a reasonable job in finding the majority of true corners.

- Edge points not in one of the eight principle directions will be assigned a relatively large cornerness value.
Moravec Detector (cont’d)

- The response is anisotropic as the intensity variation is only calculated at a discrete set of shifts (i.e., not rotationally invariant)
Harris Detector

Change of intensity for the shift \([u, v]\):

\[
E(u, v) = \sum_{x, y} w(x, y) \left[I(x + u, y + v) - I(x, y) \right]^2
\]

- Improves the Moravec operator by avoiding the use of discrete directions and discrete shifts.
- Uses a Gaussian window instead of a square window.
For small shifts \([u, v]\) we have a *bilinear* approximation:

\[
E(u, v) \equiv \begin{bmatrix} u \\ v \end{bmatrix} \cdot M \cdot \begin{bmatrix} u \\ v \end{bmatrix}
\]

where \(M\) is a 2\(\times\)2 matrix computed from image derivatives:

\[
M = \sum_{x, y} w(x, y) \begin{bmatrix} I_x^2 & I_x I_y \\ I_x I_y & I_y^2 \end{bmatrix}
\]
Harris Detector (cont’d)

\[S_W(\Delta x, \Delta y) = \sum_{x_i \in W} \sum_{y_i \in W} (f(x_i, y_i) - f(x_i - \Delta x, y_i - \Delta y))^2. \]

- Using first-order Taylor approximation:

\[f(x_i - \Delta x, y_i - \Delta y) \approx f(x_i, y_i) + \left[\frac{\partial f(x_i, y_i)}{\partial x}, \frac{\partial f(x_i, y_i)}{\partial y} \right] \begin{bmatrix} \Delta x \\ \Delta y \end{bmatrix}, \]

\[f(x) = f(a) + \frac{f'(a)}{1!}(x - a) + \frac{f''(a)}{2!}(x - a)^2 + \ldots + \frac{f^{(n)}(a)}{n!}(x - a)^n + O(x^{n+1}) \]
Harris Detector (cont’d)

\[
S_W(\Delta x, \Delta y) = \sum_{x_i \in W} \sum_{y_i \in W} \left(f(x_i, y_i) - f(x_i, y_i) - \left[\frac{\partial f(x_i, y_i)}{\partial x}, \frac{\partial f(x_i, y_i)}{\partial y} \right] \left[\Delta x \right] \right)^2
\]

\[
= \sum_{x_i \in W} \sum_{y_i \in W} \left(- \left[\frac{\partial f(x_i, y_i)}{\partial x}, \frac{\partial f(x_i, y_i)}{\partial y} \right] \left[\Delta x \right] \right)^2
\]

\[
= \sum_{x_i \in W} \sum_{y_i \in W} \left(\left[\frac{\partial f(x_i, y_i)}{\partial x}, \frac{\partial f(x_i, y_i)}{\partial y} \right] \left[\Delta x \right] \right)^2
\]

Since \(u^2 = u^\top u \)
Harris Detector (cont’d)

\[AW(x,y) = \sum_{x_i \in W} \sum_{y_i \in W} [\Delta x, \Delta y] \left(\left[\frac{\partial f}{\partial x} \right] \left[\begin{array}{cc} \frac{\partial f}{\partial x} & \frac{\partial f}{\partial y} \end{array} \right] \right) \left[\begin{array}{c} \Delta x \\ \Delta y \end{array} \right] \]

\[= [\Delta x, \Delta y] \left(\sum_{x_i \in W} \sum_{y_i \in W} \left[\frac{\partial f}{\partial x} \right] \left[\begin{array}{cc} \frac{\partial f}{\partial x} & \frac{\partial f}{\partial y} \end{array} \right] \right) \left[\begin{array}{c} \Delta x \\ \Delta y \end{array} \right] \]

\[= [\Delta x, \Delta y] AW(x,y) \left[\begin{array}{c} \Delta x \\ \Delta y \end{array} \right], \]

\[AW(x,y)= \begin{bmatrix} \sum_{x_i \in W} \sum_{y_i \in W} \left(\frac{\partial f(x_i,y_i)}{\partial x} \right)^2 & \sum_{x_i \in W} \sum_{y_i \in W} \frac{\partial f(x_i,y_i)}{\partial x} \frac{\partial f(x_i,y_i)}{\partial y} \\ \sum_{x_i \in W} \sum_{y_i \in W} \frac{\partial f(x_i,y_i)}{\partial x} \frac{\partial f(x_i,y_i)}{\partial y} & \sum_{x_i \in W} \sum_{y_i \in W} \left(\frac{\partial f(x_i,y_i)}{\partial y} \right)^2 \end{bmatrix} \]

2 x 2 matrix
(auto-correlation or 2nd order moment matrix)
Harris Detector

- General case – use window function:

\[
S_W(\Delta x, \Delta y) = \sum_{x_i, y_i} w(x_i, y_i) \left[f(x_i, y_i) - f(x_i - \Delta x, y_i - \Delta y) \right]^2
\]

default window function \(w(x,y) \):

1 in window, 0 outside

\[
A_W = \begin{bmatrix}
\sum_{x,y} w(x, y) f_x^2 & \sum_{x,y} w(x, y) f_x f_y \\
\sum_{x,y} w(x, y) f_x f_y & \sum_{x,y} w(x, y) f_y^2
\end{bmatrix} = \sum_{x,y} w(x, y) \begin{bmatrix} f_x^2 & f_x f_y \\ f_x f_y & f_y^2 \end{bmatrix}
\]
Harris Detector (cont’d)

- Harris uses a Gaussian window: \(w(x,y) = G(x,y,\sigma_I) \) where \(\sigma_I \) is called the “integration” scale.

\[
A_w = \begin{bmatrix}
\sum_{x,y} w(x,y) f_x^2 & \sum_{x,y} w(x,y) f_x f_y \\
\sum_{x,y} w(x,y) f_x f_y & \sum_{x,y} w(x,y) f_y^2
\end{bmatrix} = \sum_{x,y} w(x,y) \begin{bmatrix} f_x^2 & f_x f_y \\ f_x f_y & f_y^2 \end{bmatrix}
\]
Harris Detector

Describes the gradient distribution (i.e., local structure) inside window!

Does not depend on $\Delta x, \Delta y$

$$A_W = \sum_{x,y} \begin{bmatrix} f_x^2 & f_x f_y \\ f_x f_y & f_y^2 \end{bmatrix}$$
Since M is symmetric, we have:

$$
A_W = R^{-1} \begin{bmatrix}
\lambda_1 & 0 \\
0 & \lambda_2
\end{bmatrix} R
$$

We can visualize A_W as an ellipse with axis lengths determined by the eigenvalues and orientation determined by R

Ellipse equation:

$$
[\Delta x \ \Delta y] \ A_W \begin{bmatrix}
\Delta x \\
\Delta y
\end{bmatrix} = \text{const}
$$

- Direction of the fastest change
- Direction of the slowest change

$(\lambda_{\text{min}})^{-1/2}$

$(\lambda_{\text{max}})^{-1/2}$
Harris Detector (cont’d)

- Eigenvectors encode edge direction
- Eigenvalues encode edge strength

\[
\begin{align*}
(\lambda_{\text{min}})^{-1/2} & \quad \text{direction of the fastest change} \\
(\lambda_{\text{max}})^{-1/2} & \quad \text{direction of the slowest change}
\end{align*}
\]
The distribution of the x and y derivatives is very different for all three types of patches.
The distribution of x and y derivatives can be characterized by the shape and size of the principal component ellipse.
Harris Detector (cont’d)

Classification of image points using eigenvalues of A_W:

- λ_1 and λ_2 are large, $\lambda_1 \sim \lambda_2$; E increases in all directions ("Corner")
- $\lambda_1 >> \lambda_2$ ("Edge")
- λ_1 and λ_2 are small; S_W is almost constant in all directions ("Flat" region)

λ_1 and λ_2 are small; S_W is almost constant in all directions ("Flat" region)
Harris Detector (cont’d)

Figure 4.9 (a): original image of a building. (b): the 15×15 pixel neighbourhoods of some of the image points for which $\lambda_2 > 20$. (c): histogram of λ_2 values across the image.

(assuming that $\lambda_1 > \lambda_2$)
Harris Detector

Measure of corner response:

$$R = \det M - k \left(\text{trace } M \right)^2$$

$$\det M = \lambda_1 \lambda_2$$
$$\text{trace } M = \lambda_1 + \lambda_2$$

(k – empirical constant, $k = 0.04$-0.06)

(Shi-Tomasi variation: use $\min(\lambda_1,\lambda_2)$ instead of R)
• R depends only on eigenvalues of M

• R is large for a corner

• R is negative with large magnitude for an edge

• $|R|$ is small for a flat region
Harris Detector

• The Algorithm:
 – Find points with large corner response function R ($R > \text{threshold}$)
 – Take the points of \textit{local maxima} of R
Harris corner detector algorithm

- Compute image gradients \(I_x \) \(I_y \) for all pixels

- For each pixel
 - Compute
 \[
 M = \sum_{x,y} w(x, y) \begin{bmatrix} I_x^2 & I_x I_y \\ I_x I_y & I_y^2 \end{bmatrix}
 \]
 by looping over neighbors \(x, y \)
 - compute
 \[
 R = \det M - k \left(\text{trace } M \right)^2
 \]

- Find points with large corner response function \(R \) \((R > \text{threshold})\)

- Take the points of locally maximum \(R \) as the detected feature points (ie, pixels where \(R \) is bigger than for all the 4 or 8 neighbors).
Harris Detector - Example

\[
\text{det}(M) - \lambda \quad \text{trace}(M) = \\
M = \begin{bmatrix}
g*I_x^2 & g*(I_xI_y) \\
g*(I_xI_y) & g*I_y^2
\end{bmatrix}
\]
Harris Detector - Example
Harris Detector - Example

Compute corner response R
Harris Detector - Example

Find points with large corner response: $R > \text{threshold}$
Harris Detector - Example

Take only the points of local maxima of R
Harris Detector - Example

Map corners on the original image
The Harris detector requires two scale parameters:

(i) a *differentiation scale* σ_D for smoothing prior to the computation of image derivatives,

\[\tilde{A}_W(x,y) \rightarrow \hat{A}_W(x,y,\sigma_I,\sigma_D) \]

&

(ii) an *integration scale* σ_I for defining the size of the Gaussian window (i.e., integrating derivative responses).

Typically, $\sigma_I = \gamma \sigma_D$
Invariance to Geometric/Photometric Changes

• Is the Harris detector invariant to geometric and photometric changes?

• Geometric
 – Rotation
 – Scale
 – Affine

• Photometric
 – Affine intensity change: $I(x,y) \rightarrow a I(x,y) + b$
Harris Detector: Rotation Invariance

- Rotation

Ellipse rotates but its shape (i.e. eigenvalues) remains the same

Corner response R is invariant to image rotation
Harris Detector: Photometric Changes

• **Affine intensity change**

 ✓ Only derivatives are used => invariance to intensity shift $I(x,y) \rightarrow I(x,y) + b$

 ✓ Intensity scale: $I(x,y) \rightarrow a I(x,y)$

Partially invariant to affine intensity change
Harris Detector: Scale Invariance

- Scaling

Corner

All points will be classified as edges

Not invariant to scaling (and affine transforms)
Harris Detector: Disadvantages

- Sensitive to:
 - Scale change
 - Significant viewpoint change
 - Significant contrast change
• A_W must be adapted to scale changes.

• If the scale change is **known**, we can adapt the Harris detector to the scale change (i.e., set properly σ_I, σ_D).

• What if the scale change is **unknown**?
• Detects interest points at varying scales.

\[R(A_W) = \text{det}(A_W(x,y,\sigma_I,\sigma_D)) - \alpha \text{trace}^2(A_W(x,y,\sigma_I,\sigma_D)) \]

\[\sigma_n = k^n \sigma \]
\[\sigma_D = \sigma_n \]
\[\sigma_I = \gamma \sigma_D \]
How to cope with transformations?

• Exhaustive search
• Invariance
• Robustness
Exhaustive search

• Multi-scale approach
Exhaustive search

• Multi-scale approach
Exhaustive search

- Multi-scale approach
Exhaustive search

- Multi-scale approach
How to handle scale changes?

- Not a good idea!
 - There will be many points representing the same structure, complicating matching!
 - Note that point locations shift as scale increases.

The size of the circle corresponds to the scale at which the point was detected.
How to handle scale changes? (cont’d)

• How do we choose corresponding circles *independently* in each image?
• Alternatively, use **scale selection** to find the **characteristic scale** of each feature.

• Characteristic scale depends on the feature’s **spatial extent** (i.e., local neighborhood of pixels).
How to handle scale changes?

- Only a subset of the points computed in scale space are selected!

The size of the circles corresponds to the scale at which the point was selected.
Automatic Scale Selection

- Design a function $F(x, \sigma_n)$ which provides some local measure.
- Select points at which $F(x, \sigma_n)$ is maximal over σ_n.

Invariance

- Extract patch from each image individually
Automatic scale selection

- **Solution:**
 - Design a function on the region, which is “scale invariant” (*the same for corresponding regions, even if they are at different scales*)

 Example: average intensity. For corresponding regions (even of different sizes) it will be the same.

 - For a point in one image, we can consider it as a function of region size (patch width)
Automatic scale selection

- Common approach:

 Take a local maximum of this function

 Observation: region size, for which the maximum is achieved, should be *invariant* to image scale.

 Important: this scale invariant region size is found in each image *independently*!
Automatic Scale Selection

• Function responses for increasing scale (scale signature)
Automatic Scale Selection

- Function responses for increasing scale (scale signature)

\[f(I_{i_1...i_m} (x, \sigma)) \]

\[f(I_{i_1...i_m} (x', \sigma)) \]
Automatic Scale Selection

- Function responses for increasing scale (scale signature)

\[f(I_{i_1...i_m} (x, \sigma)) \]

\[f(I_{i_1...i_m} (x', \sigma)) \]
Automatic Scale Selection

- Function responses for increasing scale (scale signature)

\[f(I_{i_1\ldots i_m}(x, \sigma)) \]

\[f(I_{i_1\ldots i_m}(x', \sigma)) \]
Automatic Scale Selection

- Function responses for increasing scale (scale signature)

\[f(I_{i1...i_m} (x, \sigma)) \]

\[f(I_{i1...i_m} (x', \sigma)) \]
Automatic Scale Selection

- Function responses for increasing scale (scale signature)

\[
f(I_{i_1...i_m}(x, \sigma))
\]

\[
f(I_{i_1...i_m}(x', \sigma'))
\]
Scale selection

- Use the scale determined by detector to compute descriptor in a normalized frame
• Characteristic scale is relatively independent of the image scale.

• The ratio of the scale values corresponding to the max values, is equal to the scale factor between the images.

Scale selection allows for finding spatial extent that is covariant with the image transformation.
Automatic Scale Selection

• What local measures should we use?
 – Should be rotation invariant
 – Should have one stable sharp peak
How should we choose $F(x, \sigma_n)$?

- Typically, $F(x, \sigma_n)$ is defined using derivatives, e.g.:

 - **Square gradient**: $\sigma^2 (L_x^2(x, \sigma) + L_y^2(x, \sigma))$
 - **LoG**: $|\sigma^2 (L_{xx}(x, \sigma) + L_{yy}(x, \sigma))|$
 - **DoG**: $|I(x) * G(\sigma_{n-1}) - I(x) * G(\sigma_n)|$
 - **Harris function**: $\det(A_W) - \alpha \text{trace}^2(A_W)$

- LoG yielded best results in a evaluation study; DoG was second best.

How should we choose $F(x, \sigma_n)$?

• Let’s see how LoG responds at blobs …
Recall: Edge detection Using 1st derivative

\[f \]

\[\frac{d}{dx} g \]

\[f \ast \frac{d}{dx} g \]

\[\text{Sigma} = 50 \]

Edge

Derivative of Gaussian

Edge = maximum of derivative
Recall: Edge detection Using 2nd derivative

\[f \]

\[\frac{d^2}{dx^2} g \]

\[f \ast \frac{d^2}{dx^2} g \]

Edge detection using the second derivative involves the following steps:

1. Compute the second derivative of the Gaussian function, \(\frac{d^2}{dx^2} g \).
2. Convolve the original image \(f \) with the second derivative of the Gaussian kernel \(\frac{d^2}{dx^2} g \).

The edge map is obtained by finding the zero crossings of the second derivative of the Gaussian applied to the image. This technique highlights the points where the image intensity changes abruptly, indicating edges.
From edges to blobs (i.e., small regions)

- **Blob** = superposition of two edges

(blobs of different spatial extent)

Spatial selection: the magnitude of the Laplacian response will achieve a maximum (absolute value) at the center of the blob, provided the scale of the Laplacian is “matched” to the scale of the blob (e.g., spatial extent)
How could we find the spatial extent of a blob using LoG?

- **Idea**: Find the characteristic scale of the blob by convolving it with Laplacian filters at several scales and looking for the maximum response.

Why does this happen?
• The response of a derivative of Gaussian filter to a perfect step edge decreases as σ increases.
• To keep response the same (scale-invariant), must multiply Gaussian derivative by σ

• Laplacian is the second Gaussian derivative, so it must be multiplied by σ^2
Effect of scale normalization

Original signal

Unnormalized Laplacian response

Scale-normalized Laplacian response ($x\sigma^2$)
What Is A Useful Signature Function?

- Laplacian-of-Gaussian = “blob” detector
Scale selection: case of circle

- At what scale does the Laplacian achieve a maximum response for a binary circle of radius r?
Scale selection: case of circle

- At what scale does the LoG achieve a maximum response for a binary circle of radius r?

- LoG is maximized at $\sigma = r / \sqrt{2}$ (characteristic scale)
Characteristic scale

- We define the *characteristic scale* as the scale that produces peak of Laplacian response.

\[\sigma = \frac{r}{\sqrt{2}} \]

Source: Lana Lazebnik
Scale-space blob detector: Example

sigma = 11.9912

Source: Lana Lazebnik
Scale-space blob detector: Example

Source: Lana Lazebnik
Harris-Laplace Detector

- Multi-scale Harris with scale selection.
- Uses LoG maxima to find characteristic scale.
(1) Compute interest points at multiple scales using the Harris detector.

- Scales are chosen as follows: \(\sigma_n = k^n \sigma_0 \) (\(\sigma_I = \sigma_n \), \(\sigma_D = c \sigma_n \))
- At each scale, choose local maxima assuming 3 x 3 window

\[
F(x, \sigma_n) > F(x_w, \sigma_n) \quad \forall x_w \in W
\]

\[
F(x, \sigma_n) > t_h
\]

where

\[
F(x, \sigma_n) = \text{det}(C) - \alpha \text{trace}^2(C)
\]

(2) Select points at which a local measure (i.e., normalized Laplacian) is maximal over scales.

\[F(x, \sigma_n) > F(x, \sigma_{n-1}) \land F(x, \sigma_n) > F(x, \sigma_{n+1}) \]

where:

\[F(x, \sigma_n) = \left| s^2 (L_{xx}(x, s) + L_{yy}(x, s)) \right| \]

\(s = \sigma_n \)

Example

• Points detected at each scale using Harris-Laplace (images differ by a scale factor 1.92)
 – Few points detected in the same location but on different scales.
 – Many correspondences between levels for which scale ratio corresponds to the real scale change between images.
Example

(same viewpoint – change in focal length and orientation)

190 and 213 points detected in the left and right images, respectively (more than 2000 points would have been detected without scale selection)
58 points are initially matched (some not correct)
Example (cont’d)

Inliers to the estimated homography

• Reject inconsistent matches using RANSAC to compute the homography between images – left with 32 matches, all of which are correct.
• The estimated scale factor is 4:9 and the estimated rotation angle is 19 degrees.
Harris-Laplace Detector (cont’d)

• Invariant to:
 – Scale
 – Rotation
 – Translation

• Robust to:
 – Illumination changes
 – Limited viewpoint changes
Efficient implementation using DoG

- LoG can be approximated by DoG:
 \[G(x, y, k\sigma) - G(x, y, \sigma) \approx (k - 1)\sigma^2 \nabla^2 G \]

- Note that DoG already incorporates the \(\sigma^2 \) scale normalization.
Efficient implementation using DoG (cont’d)

- Gaussian-blurred image

\[L(x, y, \sigma) = G(x, y, \sigma) \ast I(x, y) \]

- The result of convolving an image with a difference-of Gaussian is given by:

\[D(x, y, \sigma) = (G(x, y, k\sigma) - G(x, y, \sigma)) \ast I(x, y) \]

\[= L(x, y, k\sigma) - L(x, y, \sigma) \]
Example

\[L(x, y, k\sigma) - L(x, y, \sigma) \]
Efficient implementation using DoG (cont’d)

\[G(x, y, k^2 \sigma) \ast I \]
\[G(x, y, k\sigma) \ast I \]
\[G(x, y, \sigma) \ast I \]

\[D(x, y, \sigma) = (G(x, y, k\sigma) - G(x, y, \sigma)) \ast I \]

\[\sigma_n = k^n \sigma \]

Efficient implementation using DoG (cont’d)

Look for local maxima in DoG pyramid

DoG pyramid

Scale
(first octave)

Gaussian

Difference of Gaussian (DOG)

Scale
Key point localization with DoG

- Detect maxima of difference-of-Gaussian (DoG) in scale space
- Then reject points with low contrast (threshold)
- Eliminate edge responses

Candidate keypoints: list of \((x,y,\sigma)\)
Example of keypoint detection

(a) 233x189 image
(b) 832 DOG extrema
(c) 729 left after peak value threshold
(d) 536 left after testing ratio of principle curvatures (removing edge responses)
Review

- Homography and Ransac
 - ReProjection method from an image to another
 - Robust fitting of the Mapping

- Interest Points
 - Corner Detection: Harris Detector
 - Scaling Issues
 - Harris-Laplace Detector