Lecture 9: Hough Transform and Thresholding

Saad Bedros
sbedros@umn.edu
Hough Transform

- Robust method to find a shape in an image
- Shape can be described in parametric form
- A **voting** scheme is used to determine the correct parameters
Example: Line fitting

- Why fit lines?
 Many objects characterized by presence of straight lines

- Can we do it with edge detection? Use edge information
Difficulty of line fitting

• Extra edge points (clutter), multiple models:
 – which points go with which line, if any?

• Only some parts of each line detected, and some parts are missing:
 – how to find a line that bridges missing evidence?

• Noise in measured edge points, orientations:
 – how to detect true underlying parameters?
Voting

- It’s not feasible to check all combinations of features by fitting a model to each possible subset.

- **Voting** is a general technique where we let the features vote for all models that are compatible with it.
 - Cycle through features, cast votes for model parameters.
 - Look for model parameters that receive a lot of votes.

- Noise & clutter features will cast votes too, *but* typically their votes should be inconsistent with the majority of “good” features.
Fitting lines: Hough transform

- Given points that belong to a line, what is the line?
- How many lines are there?
- Which points belong to which lines?

- **Hough Transform** is a voting technique that can be used to answer all of these questions.

 Main idea:
 1. Record vote for each possible line on which each edge point lies.
 2. Look for lines that get many votes.
Finding lines in an image: Hough space

Connection between image (x,y) and Hough (m,b) spaces

- A line in the image corresponds to a point in Hough space
- To go from image space to Hough space:
 - given a set of points (x,y), find all (m,b) such that \(y = mx + b \)
Finding lines in an image: Hough space

Connection between image \((x,y)\) and Hough \((m,b)\) spaces

- A line in the image corresponds to a point in Hough space
- To go from image space to Hough space:
 - given a set of points \((x,y)\), find all \((m,b)\) such that \(y = mx + b\)
- What does a point \((x_0, y_0)\) in the image space map to?

- Answer: the solutions of \(b = -x_0m + y_0\)
- this is a line in Hough space
Finding lines in an image: Hough space

What are the line parameters for the line that contains both \((x_0, y_0)\) and \((x_1, y_1)\)?

- It is the intersection of the lines \(b = -x_0m + y_0\) and \(b = -x_1m + y_1\)
Finding lines in an image: Hough algorithm

How can we use this to find the most likely parameters (m,b) for the most prominent line in the image space?

- Let each edge point in image space *vote* for a set of possible parameters in Hough space
- Accumulate votes in discrete set of bins; parameters with the most votes indicate line in image space.
Hough Transform for Line Detection

Find a subset of n points on an image that lie on the same straight line.
Write each line formed by a pair of these points as

$$y_i = ax_i + b$$

Then plot them on the parameter space (a, b):

$$b = x_i a + y_i$$

All points (x_i, y_i) on the same line will pass the same parameter space point (a, b).
Quantize the parameter space and tally # of times each points fall into the same accumulator cell. The cell count = # of points in the same line.
Polar representation for lines

Issues with usual \((m,b)\) parameter space: can take on infinite values, undefined for vertical lines.

\(d\) : perpendicular distance from line to origin

\(\theta\) : angle the perpendicular makes with the x-axis

\[x \cos \theta - y \sin \theta = d \]
Hough Transform in \((\rho, \theta)\) plane

To avoid infinity slope, use polar coordinate to represent a line.

\[x \cos \theta + y \sin \theta = \rho \]

Q points on the same straight line gives Q sinusoidal curves in \((\rho, \theta)\) plane intersecting at the same \((\rho_i, \theta_i)\) cell.
Hough transform algorithm

Using the polar parameterization:

\[x \cos \theta - y \sin \theta = d \]

Basic Hough transform algorithm

1. Initialize \(H[d, \theta] = 0 \)
2. for each edge point \(I[x,y] \) in the image
 for \(\theta = [\theta_{\text{min}} \text{ to } \theta_{\text{max}}] \) // some quantization
 \[d = x \cos \theta - y \sin \theta \]
 \(H[d, \theta] ++ 1 \)
3. Find the value(s) of \((d, \theta) \) where \(H[d, \theta] \) is maximum
4. The detected line in the image is given by \(d = x \cos \theta - y \sin \theta \)

Time complexity (in terms of number of votes per pt)?

Source: Steve Seitz
Hough Transform for Lines

\[r = x_1 \cos(\theta) + y_1 \sin(\theta) \]
Hough Transform for Lines

\[r = x_1 \cos(\theta) + y_1 \sin(\theta) \]
Peak in the parametric space that corresponds to the line.
Hough Transform for Lines

- Domain of the parametric space:

\[r \in \left[-\sqrt{M^2 + N^2}, \sqrt{M^2 + N^2}\right], \quad \theta \in \left[-\frac{\pi}{2}, \frac{\pi}{2}\right] \]

\(M \) and \(N \) image resolution

Not just lines, any parametric curve!

However increase of dimensions of the parametric space
Original image

Canny edges

Vote space and top peaks
Showing longest segments found
Impact of noise on Hough

Image space edge coordinates

Votes

What difficulty does this present for an implementation?
Impact of noise on Hough

In this case, everything appears to be “noise”, or random edge points, but we still see some peaks in the vote space.
Extension 1: Use the image gradient

1. same
2. for each edge point $I[x,y]$ in the image
 $\theta = \text{gradient at } (x,y)$

 $d = x \cos \theta - y \sin \theta$

 $H[d, \theta] += 1$
3. same
4. same

(Reduces degrees of freedom)
Extensions

Extension 1: Use the image gradient
1. same
2. for each edge point $I[x,y]$ in the image
 compute unique (d, θ) based on image gradient at (x,y)
 $$H[d, \theta] += 1$$
3. same
4. same
(Reduces degrees of freedom)

Extension 2
- give more votes for stronger edges (use magnitude of gradient)

Extension 3
- change the sampling of (d, θ) to give more/less resolution

Extension 4
- The same procedure can be used with circles, squares, or any other shape…

Source: Steve Seitz
Hough transform for circles

• Circle: center \((a, b)\) and radius \(r\)

\[
(x_i - a)^2 + (y_i - b)^2 = r^2
\]

• For a fixed radius \(r\), unknown gradient direction
Hough transform for circles

- Circle: center \((a, b)\) and radius \(r\)
 \[(x_i - a)^2 + (y_i - b)^2 = r^2\]
- For a fixed radius \(r\), unknown gradient direction

Intersection: most votes for center occur here.

Kristen Grauman
Hough transform for circles

- Circle: center \((a, b)\) and radius \(r\)

 \[
 (x_i - a)^2 + (y_i - b)^2 = r^2
 \]

- For an unknown radius \(r\), unknown gradient direction
Hough transform for circles

• Circle: center \((a, b)\) and radius \(r\)

\[
(x_i - a)^2 + (y_i - b)^2 = r^2
\]

• For an unknown radius \(r\), unknown gradient direction
Equation of Circle:

\[(x_i - a)^2 + (y_i - b)^2 = r^2\]
Multiple Circles with known R

- Multiple circles with the same radius can be found with the same technique. The centerpoints are represented as red cells in the parameter space drawing.

- Overlap of circles can cause spurious centers to also be found, such as at the blue cell. Spurious circles can be removed by matching to circles in the original image.

Each point in geometric space (left) generates a circle in parameter space (right). The circles in parameter space intersect at the \((a, b)\) that is the center in geometric space.
HT for Circles: Search with unknown R

Equation of Circle:

$$(x_i - a)^2 + (y_i - b)^2 = r^2$$

If radius is not known: 3D Hough Space!
Use Accumulator array $A(a, b, r)$
Hough transform for circles

For every edge pixel \((x,y)\):

 For each possible radius value \(r\):

 For each possible gradient direction \(\theta\):

 // or use estimated gradient at \((x,y)\)

 \[a = x - r \cos(\theta) \] // column

 \[b = y + r \sin(\theta) \] // row

 \[H[a,b,r] += 1 \]
Example: detecting circles with Hough

Note: a different Hough transform (with separate accumulators) was used for each circle radius (quarters vs. penny).
Example: detecting circles with Hough

Original Edges Votes: Quarter

Combined detections
Example: iris detection

Gradient+threshold Hough space (fixed radius) Max detections
Voting: practical tips

• Minimize irrelevant tokens first

• Choose a good grid / discretization

 Too fine ? Too coarse

• Vote for neighbors, also (smoothing in accumulator array)

• Use direction of edge to reduce parameters by 1

• To read back which points voted for “winning” peaks, keep tags on the votes.
Hough transform: pros and cons

Pros

• All points are processed independently, so can cope with occlusion, gaps

• Some robustness to noise: noise points unlikely to contribute consistently to any single bin

• Can detect multiple instances of a model in a single pass

Cons

• Complexity of search time increases exponentially with the number of model parameters

• Non-target shapes can produce spurious peaks in parameter space

• Quantization: can be tricky to pick a good grid size
Generalized Hough Transform

• What if we want to detect arbitrary shapes?
• Detect any arbitrary shape
 – Requires specification of the exact shape of the object

- Compute centroid
- For each edge compute its distance to centroid

\[
\begin{bmatrix}
 x' \\
 y'
\end{bmatrix} = \begin{bmatrix}
 x - x_0 \\
 y - y_0
\end{bmatrix}
\]

- Find edge orientation (gradient angle)
- Construct a table of angles and \(r \) values
Generalized Hough Transform

• Define a model shape by its boundary points and a reference point.

At each boundary point, compute displacement vector: \(\mathbf{r} = \mathbf{a} - \mathbf{p}_i \).

Store these vectors in a table indexed by gradient orientation \(\theta \).

[Book reference: Dana H. Ballard, Generalizing the Hough Transform to Detect Arbitrary Shapes, 1980]
Generalized Hough Transform

R-Table

<table>
<thead>
<tr>
<th>Φ1</th>
<th>r1, r2, r3 ...</th>
</tr>
</thead>
<tbody>
<tr>
<td>Φ2</td>
<td>r14, r21, r23 ...</td>
</tr>
<tr>
<td>Φ3</td>
<td>r41, r42, r33 ...</td>
</tr>
<tr>
<td>Φ4</td>
<td>r10, r12, r13 ...</td>
</tr>
</tbody>
</table>

![Diagram of the Generalized Hough Transform](image)
Generalized Hough Transform

Detection procedure:

For each edge point:

- Use its gradient orientation θ to index into stored table
- Use retrieved r vectors to vote for reference point

Assuming translation is the only transformation here, i.e., orientation and scale are fixed.
Generalized Hough Transform

- known
 - Edge points (x,y)
 - Gradient angle at every edge point θ
 - R-table of the shape needs to be determined

- For each edge point find θ store it in corresponding row of R-table

- Create an accumulator array of 2D (x,y)
Generalized Hough Transform

1. Quantize the parameter space $P[x_{c_{min}}, \ldots, x_{c_{max}}, y_{c_{min}}, \ldots, y_{c_{max}}].$

2. For each edge point (x, y) do
 compute $\phi(x, y)$
 for each table entry for ϕ do

 $x_c = x + x'$ \hspace{1cm} (4.13)
 $y_c = y + y'$ \hspace{1cm} (4.14)

 $P[x_c, y_c] = P[x_c, y_c] + 1.$

3. Find the local maxima in the parameter space.

 Figure 4.8: Generalized Hough transform algorithm.
Rotation and Scale Solution

- **Rotation around Z-axis**

 \[x' = x \cos \alpha - y \sin \alpha \]

 \[y' = x \sin \alpha + y \cos \alpha \]

- **Scaling**

 \[x' = sx \]

 \[y' = sy \]

- **Rotation + Scaling**

 \[x' = s(x \cos \alpha - y \sin \alpha) \]

 \[y' = s(x \sin \alpha + y \cos \alpha) \]
Rotation and Scale Solution

- Replace equations 4.13 and 4.14 in Algorithm 4.8 by following and loop for scale and rotation angles.

\[
\begin{align*}
x_c &= x + s_x(x' \cos \theta + y' \sin \theta) \\
y_c &= y + s_y(-x' \sin \theta + y' \cos \theta)
\end{align*}
\]
Segmentation of Objects Using Thresholding Method
Thresholding based Segmentation

• Goal is to identify an object based on uniform intensity

• Use the Histogram to compute the best threshold that can separate the object intensity
Thresholding Methods

1. Principles of greyvalue thresholding

2. Histogram-based thresholding

3. Methods for automatic threshold selection
 - Otsu’s method
 - Histogram modelling by Gaussian distributions

4. Examples and analysis of thresholding
 - Examples of thresholding
 - Analysis of thresholding
Thresholding Principles

- Basic **image segmentation** technique
- Assumes following **conditions**
 - scene contains uniformly illuminated, flat surfaces
 - image is set of approximately uniform regions
- **Goal**
 - set one or more **thresholds** which split intensity range into intervals
 - ⇒ define **intensity classes**
- **Result**
 - objects labelled by classifying pixel intensities into classes
 - ⇒ objects separated from background
Thresholding Example

- Set \(N - 1 \) thresholds \(T_k, k = 1, \ldots, N - 1, N \geq 2 \), so that pixel \(f(x, y) \) is classified into class \(n \) if

\[
T_{n-1} \leq f(x, y) < T_n, \quad n = 1, \ldots, N
\]

- By definition, \(T_0 = 0 \) and \(T_N = G_{\text{max}} + 1 = 256 \)

Illustration of 4-level thresholding. \(T_0 = 0 \) and \(T_4 = 256 \). First level is background.
Thresholding Examples

- **Single threshold**: $N = 2$
 - *bilevel* (binary) thresholding, or *binarisation*
 \Rightarrow considered in this course
- **Multilevel** thresholding: $N > 2$
 - case $N = 3$ often called *trilevel*
Histogram Calculation

- Occurrence probability of greyvalue k in image
 \[P(k) = \frac{n_k}{n} \]
 - n_k is number of pixels with greyvalue $k = 0, 1, \ldots, 255$
 - n is total number of pixels in image
 \[\Rightarrow P(k) \text{ shows how frequently } k \text{ occurs in image} \]
- Calculation simple and fast
 - initialise $p[k] = 0$
 - scan image, for greyvalue k set $p[k] \leftarrow p[k] + 1$
 - after scan, normalise $P[k] = p[k]/n$
Histogram Profiles

- Desirable histogram shape
 - bimodal with distinct modes and valley between modes
 - \(\Rightarrow \) minimum of valley separates classes

- Undesirable histogram shapes
 - **mode at limit** of intensity range
 - \(\Rightarrow \) modelling the histogram difficult
 - **mode not distinct**
 - \(\Rightarrow \) setting good threshold not easy
 - **unimodal**
 - \(\Rightarrow \) thresholding difficult but still possible
Good and Bad Histograms

- Several thresholds are acceptable
 - near valley (G) in histogram
- Bad thresholds have different effects
 - too low threshold (L) tends to split lines
 - too high threshold (H) tends to merge lines
Maximum Separation

- Proposed by N. Otsu (Japan), 1978
- Consider a candidate threshold t
 - t defines two classes of grayvalues
- Define measure of separation of classes
 - distance between classes as function of t
- Find optimal threshold t_{opt} that maximises separation
Adaptive Thresholding

Mean and variance of total normalised histogram $P(i)$:

$$\mu = \sum_{i=0}^{G_{\text{max}}} iP(i) \quad \sigma^2 = \sum_{i=0}^{G_{\text{max}}} (i - \mu)^2 P(i)$$

Threshold t splits $P(i)$ into two classes C_1, C_2 with

$$\mu_1(t) = \frac{1}{q_1(t)} \sum_{i=0}^{t} iP(i) \quad \sigma_1^2(t) = \frac{1}{q_1(t)} \sum_{i=0}^{t} [i - \mu_1(t)]^2 P(i)$$

$$\mu_2(t) = \frac{1}{q_2(t)} \sum_{i=t+1}^{G_{\text{max}}} iP(i) \quad \sigma_2^2(t) = \frac{1}{q_2(t)} \sum_{i=t+1}^{G_{\text{max}}} [i - \mu_2(t)]^2 P(i)$$

$$q_1(t) = \sum_{i=0}^{t} P(i) \quad q_2(t) = \sum_{i=t+1}^{G_{\text{max}}} P(i) \quad q_1(t) + q_2(t) = 1$$

ME5286 – Lecture 9
Two Types of Variance

- Total variance σ^2 has two components
 - within-class variance for given t
 \Rightarrow weighted sum of two class variances
 - between-class variance for given t
 \Rightarrow distance between classes
- Within-class variance is
 $$\sigma^2_W(t) = q_1(t)\sigma_1^2(t) + q_2(t)\sigma_2^2(t)$$
 \Rightarrow note that $\mu = q_1(t)\mu_1(t) + q_2(t)\mu_2(t)$
- Between-class variance is the rest of σ^2
 $$\sigma^2_B(t) = \sigma^2 - \sigma^2_W(t)$$
Threshold selection via optimization

- It is easy to show that

\[\sigma_B^2(t) = q_1(t)q_2(t)[\mu_1(t) - \mu_2(t)]^2 \]
\[= q_1(t)[1 - q_1(t)][\mu_1(t) - \mu_2(t)]^2 \]

- Optimal threshold \(t_{opt} \) best separates the two classes

- \(\sigma_W^2(t) + \sigma_B^2(t) \) is constant \(\rightarrow \) two equivalent options
 - minimise \(\sigma_W^2(t) \) as overlap of classes
 - maximise \(\sigma_B^2(t) \) as distance between classes

\(\Rightarrow \) Use second option
Recursive Procedure

\[q_1(t + 1) = q_1(t) + P(t + 1) \quad \text{with} \quad q_1(0) = P(0) \]
\[\mu_1(t + 1) = \frac{q_1(t)\mu_1(t) + (t + 1)P(t + 1)}{q_1(t + 1)} \quad \text{with} \quad \mu_1(0) = 0 \quad (2) \]
\[\mu_2(t + 1) = \frac{\mu - q_1(t + 1)\mu_1(t + 1)}{1 - q_1(t + 1)} \]

Algorithm 1: Otsu threshold selection

1. Compute image histogram \(P(i) \), calculate \(\mu \) and \(\sigma \)
2. For each \(0 < t < G_{max} \)
 - recursively compute \(q_1(t), \mu_1(t) \) and \(\mu_2(t) \) by eq.(2)
 - calculate \(\sigma_B^2(t) \) by eq.(1)
3. Select threshold as \(t_{opt} = \arg \max_t \sigma_B^2(t) \)
Properties

- **Advantages**
 - general: no specific histogram shape assumed
 - works well, stable
 - extension to multilevel thresholding possible
 \[\Rightarrow \text{for } N \text{ thresholds and } M = G_{\text{max}} + 1 \text{ grey levels, maximum search in array of } M^N \text{ size} \]

- **Drawbacks**
 - assumes that \(\sigma_B^2(t) \) is unimodal: not always true
 - \(\sigma_B^2(t) \) is often flat, false maxima may occur
 - tends to artificially enlarge small classes
 \[\Rightarrow \text{small classes may be merged and missed} \]
Gaussian Mixture Modeling of Histograms

- Assume histogram $P(i)$ is mixture of two Gaussian distributions
- Fit this model to $P(i)$, estimate parameters of model
- Find optimal threshold analytically as valley in model function
Model distribution is weighted sum of two Gaussians

\[f(i, \mathbf{p}) = q_1 f_1(i, \mathbf{p}_1) + q_2 f_2(i, \mathbf{p}_2) \]

\[= \frac{q_1}{\sqrt{2\pi\sigma_1}} e^{-\frac{1}{2} \left(\frac{i-\mu_1}{\sigma_1} \right)^2} + \frac{q_2}{\sqrt{2\pi\sigma_2}} e^{-\frac{1}{2} \left(\frac{i-\mu_2}{\sigma_2} \right)^2} \] \hspace{1cm} (3)

- Parameter sets
 - function \(f \): \(\mathbf{p} = (q_1, q_2, \mu_1, \mu_2, \sigma_1, \sigma_2) \)
 - functions \(f_k, k = 1, 2 \): \(\mathbf{p}_k = (q_k, \mu_k, \sigma_k) \)
- Weights \(q_1 \) and \(q_2 \) of partial distributions
 - \(q_1 + q_2 = 1 \)
 - five free parameters (degrees of freedom, dof)
 - exclude \(q_2 \), denote \(\mathbf{p}' = (q_1, \mu_1, \mu_2, \sigma_1, \sigma_2) \)
Fitting error function

\[C(p') = \sum_{i=0}^{G_{\text{max}}} [f(i, p') - P(i)]^2 \quad (4) \]

- To fit \(f(i, p') \) to \(P(i) \), minimise \(C(p') \)
 - estimate optimal parameters \(\hat{p} \)

- Nonlinear minimisation with five variables
- A nonlinear minimisation algorithm can be used
 - Newton
 - Marquardt-Levenberg
 - stochastic

- Iterative minimisation algorithms can fail to give any result
 - no solution for fitting, no threshold
Derivation of Optimal Threshold

- Assume model fitting has been done
 \Rightarrow \text{optimal parameters obtained: } (\hat{q}_1, \hat{q}_2, \hat{\mu}_1, \hat{\mu}_2, \hat{\sigma}_1, \hat{\sigma}_2)

- Now, how to calculate optimal threshold?

Minimise probability of wrong classification

\[E(t) = E_1(t) + E_2(t) = \int_{-\infty}^{t} f_2(i) \, di + \int_{t}^{\infty} f_1(i) \, di \]

- \(E_1(t)\): pixel from \(C_1\) classified as \(C_2\)
- \(E_2(t)\): pixel from \(C_2\) classified as \(C_1\)
Set $E'(t) = 0$, substitute f_1 and f_2 from eq.(3)

⇒ **Optimal threshold** t_{opt} is solution of

$$At^2 + Bt + C = 0,$$ \hspace{1cm} (5)

where

$$A = \hat{\sigma}_1^2 - \hat{\sigma}_2^2$$
$$B = 2(\hat{\mu}_1 \hat{\sigma}_2^2 - \hat{\mu}_2 \hat{\sigma}_1^2)$$
$$C = \hat{\sigma}_1^2 \hat{\mu}_2^2 - \hat{\sigma}_2^2 \hat{\mu}_1^2 + 2\hat{\sigma}_1^2 \hat{\sigma}_2^2 \ln \left(\frac{\hat{\sigma}_2 \hat{q}_1}{\hat{\sigma}_1 \hat{q}_2} \right)$$
Cases for Optimal Threshold

- If eq. (5) has **two real roots** $\in [0, 255]$
 \[\Rightarrow \text{select root for which error } E(t) \text{ is smaller} \]
- If eq. (5) has **no real root** $\in [0, 255]$
 \[\Rightarrow \text{no optimal threshold available} \]
- If $\sigma_1^2 = \sigma_2^2 = \sigma^2$
 \[\Rightarrow \text{single optimal threshold exists} \]

\[t_{opt} = \frac{\hat{\mu}_1 + \hat{\mu}_2}{2} + \frac{\hat{\sigma}^2}{\hat{\mu}_1 - \hat{\mu}_2} \ln \left(\frac{\hat{q}_1}{\hat{q}_2} \right) \]
Algorithm 2: Gaussian threshold selection

1. Calculate normalised histogram $P(i)$
2. Minimise fitting error function $C(p')$ defined by (4) and (3)
 \Rightarrow obtain optimal parameter estimates $\hat{q}_1, \hat{q}_2, \hat{\mu}_1, \hat{\mu}_2, \hat{\sigma}_1, \hat{\sigma}_2$
3. Solve equation (5) for t, obtain two roots
4. Discard imaginary roots and real roots $\notin [0, 255]$
 - if single root t_s remains, set $t_{opt} = t_s$
 - if two roots remain, select root with smaller $E(t)$
Properties of Gaussian Mixture Approach

- **Advantages**
 - reasonably general histogram model
 - when model is valid, minimises classification error probability
 - may work for small-size classes

- **Drawbacks**
 - many histograms are not Gaussian mixtures
 - greyvalues are **finite** and **non-negative**
 - peak close to intensity limit do not fit Gaussian
 - extension to multithresholding practically impossible
 - needs unrealistic simplification of model
 - difficult to detect near and flat modes of histogram
Examples

- Gaussian algorithm sets lower thresholds in both cases
 ⇒ fits object contours better than Otsu
Otsu vs Gaussian Approach

- **Otsu** algorithm sets threshold $T = 158$ in valley
 \Rightarrow lines are well-separated
- **Gaussian** algorithm sets slightly high threshold $T = 199$
 \Rightarrow some lines touch
Gaussian Gives Poor Results

- Otsu algorithm finds small class of pixels (dark discs)
- Gaussian algorithm tries to separate two high peaks formed by background
 - Selects noisy valley because true class is
 - too small
 - too far away
Gaussian Mixture – a Fail Case

- Only Otsu algorithm produces results
- Gaussian algorithm gives **no results** at all
 - upper row: unimodal histogram, model fitting failed
 - lower row: fitting done, threshold equation has no real root
Issues with Thresholding

- Histogram based thresholding is very effective.
- Even with low noise, if one class is much smaller than the other we might still be in trouble.
- Remember also that both these images have the same histogram: